skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shuvo, Abdul Aziz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 2, 2026
  2. Computational fluid dynamics models often employ the free shear boundary condition at free surfaces, a result from the continuity of the stress and the large viscosity contrast at liquid–gas interfaces. This study leverages nonequilibrium molecular dynamics simulations to investigate the validity of the free shear boundary condition on the exposed surface of a liquid meniscus at the nanoscale. The primary objective is elucidating the fundamental mechanisms and behavior of fluid interactions within a capillary meniscus formed between two carbon nanotubes (CNTs) in shear-driven flow. Shear-driven flow simulations were conducted by varying the velocity of a solid slab to induce different shear rates in the adjacent water molecules. The results demonstrate, for the first time, negligible shear at the free surface, supporting the free shear assumption from the nanoscale point of view. A force balance analysis reveals that capillary and surface tension forces dominate within the meniscus, dictating its shape and stability. Meniscus deformation was observed and primarily attributed to interatomic interactions between water molecules and CNTs, driven by a combination of short-range repulsive forces and van der Waals attractions. The minimal contribution from shear forces suggests that interatomic forces, rather than applied shear stress, are the primary drivers of the meniscus deformation. These findings offer valuable insights into fluid behavior and a sound fundamental analysis of the free shear boundary condition at the nanoscale. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. This paper reports on the effects of shear rate and interface modeling parameters on the hydrodynamic slip length (LS) for water–graphite interfaces calculated using non-equilibrium molecular dynamics. Five distinct non-bonded solid–liquid interaction parameters were considered to assess their impact on LS. The interfacial force field derivations included sophisticated electronic structure calculation-informed and empirically determined parameters. All interface models exhibited a similar and bimodal LS response when varying the applied shear rate. LS in the low shear rate regime (LSR) is in good agreement with previous calculations obtained through equilibrium molecular dynamics. As the shear rate increases, LS sharply increases and asymptotes to a constant value in the high shear regime (HSR). It is noteworthy that LS in both the LSR and HSR can be characterized by the density depletion length, whereas solid–liquid adhesion metrics failed to do so. For all interface models, LHSR calculations were, on average, ∼28% greater than LLSR, and this slip jump was confirmed using the SPC/E and TIP4P/2005 water models. To address the LS transition from the LSR to the HSR, the viscosity of water and the interfacial friction coefficient were investigated. It was observed that in the LSR, the viscosity and friction coefficient decreased at a similar rate, while in the LSR-to-HSR transition, the friction coefficient decreased at a faster rate than the shear viscosity until they reached a new equilibrium, hence explaining the LS-bimodal behavior. This study provides valuable insights into the interplay between interface modeling parameters, shear rate, and rheological properties in understanding hydrodynamic slip behavior. 
    more » « less